周绍平平日里虽然乐呵呵的不发脾气,但在研究上却有个很古怪的坚持:
凡是已经划定好的任务,他绝不会交给别人去做。
这个习惯周绍平保持了整整40年,没想到在今天他居然……
破例了?
是因为体力不支?
杨老扫了眼周绍平,心中轻轻摇了摇头。
不太像。
虽然周绍平看起来确实有点疲惫,但无论是脸色还是计算效率,都远远没有到‘撑不下去’这种程度。
而既然不是体力原因,那么答案就只有一个了——
周绍平遇到了可以真正信赖的后辈,这股信心之强,硬生生盖过了心中的那道梦魇。
想到这里。杨老又悄悄看了眼身边的徐云,脸上的表情有些微妙。
周绍平、章公定、侯星远、王老……哦,还有杨老本人。
不知不觉中。
这个年轻人已经与如此多老一辈院士有过接触,并且得到了他们的承认与帮助,被一位又一位老院士载予厚望。
纵观整个华夏科学界的年轻一代,徐云是唯一一人。
不过很有意思的是……
他本人似乎并没意识到这一点?
……
其实如果徐云能追更到这一章的话,他或许能透过文字内容了解到杨老心中所想。
但遗憾的是,他并没有这个能力。
所以此时他的心思压根就没去考虑什么期待或者信任,而是一心投放到了数据的计算上。
毕竟这是最后的boss了。
有着狄利克雷的加持,徐云的脑海显得一片清明。
唰唰唰——
大量的公式随着笔尖的移动,一个接一个的出现在了算纸上。
模量平方算符中同时含有位置算符与动量算符,二者存在一种很精确的对易关系。
如果是通过现象测得的微粒,推导起来其实是很容易的,套模板就行了。
但问题是‘冥王星’粒子并没有被捕捉过,所以推导过程就非常麻烦了。
而徐云这次准备的切入点是……
庞加莱群。
因为庞加莱群有个很特殊的地方:
它的表示可以完全由其迷向子群及诱导表示决定。
借助poincare群万有覆盖的小群在自旋空间上的表示,即可得到该万有覆盖在希尔伯特空间上的不可约幺正表示,即诱导表示。
不同的迷向子群给出不同的诱导表示,对应不同的单粒子态。
即粒子的不可约幺正表示,是完全由时空的基本对称性决定了的,不会有其他因素干扰。
嗯,上面这段话是标准的汉字和人话。
过了片刻。
徐云在密级的计算内容下方,写下了算符l^z本征值为m的本征态:
l^+ψm=cψm+1……
同时[l^z,l^+]=l^+可得l^zl^+=l^++l^+l^z=l^+(1+l^z),所以可见l^+相当于一个生成算符,l^-相当于一个湮灭算符。它们使得l^z的本征值总是依次递增或递减整数1,当角动量的模量平方取定且l^z的最大本征值为m=l-1时,则必有l^+ψl=0。
看到这里。
可能有部分众所周同学就感觉有些奇怪了:
为什么最大本征值是m=l-1呢,不应该是等于l吗?
原因很简单。
因为当角动量的模量平方取定且l为m的量最大允许值时,本征值为l+1的态是不存在的。
由于系统总可以处于轨道角动量为0的状态,所以0必是分量算符l^z的一个本征值。
而由l^+与l^-的行为可知,对于角动量分量算符l^z,它的相邻本征值之间总是相差一个整数1。
所以分量算符l^z的本征值只能为m=0,±1,±2,……±l-1。