在1747年到1923年之间,数学家们只用欧拉的公式计算出了217对亲和数。
当然了。
随着计算机被发明出来后,亲和数的计算就简单许多了。
就像圆周率已经计算到了62.8万亿位一样,后世亲和数已经锁定到38万位数以上了。
你看,数字都有女朋友了,某些人却还是单身狗。
哦,徐云也是啊,那没事了。
总而言之。
在后世已经计算出大量亲和数的前提下。
徐云期待的并不是高斯的这卷手稿能给未来带去多大帮助,而是……
高斯作为赫赫有名的数学王子,他对于亲和数到底有没有做过计算呢?
至少在徐云的认知里。
后世高斯的‘遗物’中肯定是没有这卷手稿的——至少已经公开的那些笔迹里找不到相关手稿的身影。
想到这里。
徐云不由看了眼高斯,说道:
“高斯教授,必须要选择好手稿后才能查看内容吗?”
高斯点了点头:
“当然,后续内容需要付费观看。”
高斯的回答在徐云的预料之中,所以他也没想着讨价还价啥的,当即答道:
“那么高斯教授,我选的第一份手稿就是它了。”
高斯见说摆了摆手,意思就是随你的便。
得到高斯的允诺后。
徐云郑重的将这卷手稿拿到了书桌边,小心的解封了起来。
绑缚手稿的道具是一根红丝线,徐云拿住丝线一头,像是解鞋带似的一拉。
咻——
手稿瞬间展开。
这份手稿意外的有些薄,大概就一两张的模样。
徐云依旧是戴着手套将其拿起,认真的看了起来。
手稿的开头记着几个数字,分别是:
220/284、2924/2620、17296/18416、9437056/9363584……
这几个数字没什么特别的,都是前人所计算出来的亲和数。接着就是欧拉归纳出来的公式。
不过当徐云继续往下扫了几眼,他的呼吸便骤然停滞了几秒钟。
只见手稿的下半部,赫然写着几个数字:
5564/5020
6368/6232
10856/10744
14595/12285
18416/17296
……
1000452085744/1023608366096
1001583011750/1019368284250……
最后一组数字的末尾可以看到一个清晰的黑色小点,显然是钢笔笔尖留下的痕迹。
而在这组数字下方,还可以看到一道公式:
σ(z)=σ(x·y)=1+[σ(x)-1]+[σ(y)-1]+[σ(x)-1][σ(y)-1]=1+σ(x)+σ(y)-2+σ(x)σ(y)-σ(x)-σ(y)+1=σ(x)σ(y)
d(x)=x(1+12+13+……+1x2)≈x[ln(x/2+1)+r]≈x(lnx-0.116)。
另外在公式的右侧,还存在着几个龙飞凤舞的字母。
翻译成汉字便是:
【太简单不算了,无聊死个人】。