“而这些点有一部分排成一条横线,另一部分排成一条竖线,但所有的点都在这两条线上,没有一个漏网的。”
黎曼猜想就是这样的一个数学公式,其中一条线则是以1/2为基础直线。
不过由于由于这些点有无穷多个,所以理论上是没有办法证明是不是所有的点都在这两条线上,因为永远也验证不完。
反过来,只要找到了一个点不在线上,那就推翻了黎曼猜想。
但截止到现在,数学界使用计算机,已经验证了最初的15亿个这样的点,全都符合黎曼猜想的排列规律。
也没人能找到一个不在线上的点。
所以通常情况下,黎曼猜想在数学界中被看做是定理,有很多的数学公式都是依托于它成立的基础而建立的。
漫长的时间在不知不觉中一点一点的流逝过去,小隔间中的灯光明亮,徐川也不知道现在到了几点。
【re(s)≤0时,ζ(s)=2π^8-1·sinπ8/2Г(1-s)ζ(1-s)】
手中捏着手中的圆珠笔快速的在稿纸上写下一个数学公式后,他陷入了沉思中。
半响后,他挠了挠头有些‘烦恼’和‘幸福’的暂停下了手中的笔。
在经过学姐刘嘉欣的提醒后,他找到了自己之前研究的问题在哪,也隐隐约约的找到了之前研究爱因斯坦罗森桥的一点方向。
但阴差阳错的,他准备研究的方向没有找到什么思路,反而在黎曼猜想上有了一点灵感。
看着铺开在办公桌上的稿纸的,徐川抿了抿嘴,这是通过泊松求和公式对ζ(s)函数和ζ(1-s)函数的推导,是对re(s)≤0时无非平凡零的求证核心步骤之一。
通俗点来说,就是对黎曼猜想做弱化,然后再去解决弱化后的黎曼猜想,即弱·黎曼猜想。
这其实也是近代数学界一直都在做的事情。
研究临界线上零点比例的下界数量,是黎曼猜想临界带思路出现以来,数学界公认的最好的方法。
黎曼猜想的ζ函数中,所有非平凡零点都位于re(s)临界点上,也非平凡零点的实数根都是1/2。
这是猜想,还没证明。
但目前来说,数学界已经做到了将黎曼猜想的ζ函数的非平凡零点都归纳到0-1这条贴近于0.5的临界带上。
简单的来说,就是我目前还做不到证明它的实数根都是1/2,那我就证明它都位于0-1之间好了。
这样说虽然不太标准,但至少比较容易理解。
临界带思路下界就是这样的一条思路。
通过不断的推进0-0.5的距离,使非平凡零点都逐级的贴近1/2。
而在这条路上,数学界涌现出了一大批的成果。
如1975年麻省理工学院的莱文森在他患癌症去世前证明了no(t)gt0.3474n(t)。1980年的时候,华国数学家楼世拓、姚琦对莱文森的工作有一点改进,他们证明了no(t)gt0.35n(t)。
目前关于黎曼猜想研究的最好结果,就是通过不断的逼近临界带这一方法证明出来的。
但遗憾的是,在黎曼猜想被提出的一个半世纪以来,关于黎曼猜想的研究进展,包括推进临界带的工作依旧遥遥无期。
徐川不知道这条路是否是对的,但目前来说,他似乎找到了另一种贴近非平凡零点的方式。
尽管这只是一点点的思路,后续还需要不断完善才行,但可以说这条思路如果由他放出去,绝对能震撼整个数学界,掀起一股黎曼猜想的热潮。
只不过,这并不是他的想要的东西。
他想要研究的‘随机厄密矩阵本征值’对关联函数,在今天却并没有多大的进展。
甚至冥冥中他有一种直觉,或许只有完全解决掉黎曼猜想这个难题,他才有可能接触到那份属于‘时空’的秘密?
素数,或许真的可能和时空相连,隐藏着宇宙最深处的奥秘。
ps:新年刚开上班,有点忙,不出意外的加班了,再加上最近看黎曼猜想和时空虫洞的论文资料看的头秃,想着想着就卡文了,这是补昨天的章节,今天还有的。